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a b s t r a c t

Noise filters are preprocessing techniques designed to improve data quality in classification tasks by detecting

and eliminating examples that contain errors or noise. However, filtering can also remove correct examples

and examples containing valuable information, which could be useful for learning. This fact usually implies

a margin of improvement on the noise detection accuracy for almost any noise filter. This paper proposes a

scheme to improve the performance of noise filters in multi-class classification problems, based on decom-

posing the dataset into multiple binary subproblems. Decomposition strategies have proven to be successful

in improving classification performance in multi-class problems by generating simpler binary subproblems.

Similarly, we adapt the principles of the One-vs-One decomposition strategy to noise filtering, making the

noise identification process simpler. In order to integrate the filtering results achieved in the binary subprob-

lems, our proposal uses a soft voting approach considering a reliability level based on the aggregation of the

noise degree prediction calculated for each binary classifier. The experimental results show that the One-vs-

One decomposition strategy usually increases the performance of the noise filters studied, which can detect

more accurately the noisy examples.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Real-world data usually contain errors or noise [1–4]. In classifi-

ation problems, a classification model must be induced from labeled

xamples and this classifier should be capable of reliably predicting

he true class of new examples. The correct assignment of class la-

els to the training examples has a strong impact on the predictive

uality of the induced classifiers. Thus, errors in the class labeling of

he training examples may severely harm the predictive performance

nd complexity of the induced classifiers [1,5,6]. This type of error is

nown in the literature as class noise or label noise [2].
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In the case of multi-class classification problems, binary decom-

osition strategies [7] are usually employed to allow the usage of

ell-known algorithms originally proposed for binary classification

roblems, such as Support Vector Machines (SVM) [8], in multi-class

asks. These strategies decompose the original problem into several

inary subproblems of a lower complexity. The most popular decom-

osition schemes are One-vs-One (OVO) [9], which induces a classi-

er to distinguish between each pair of classes, and One-vs-All (OVA)

9], which induces a classifier to distinguish each class from all other

lasses.

The behavior of the OVO strategy in presence of noise was studied

y Sáez et al. in [10]. In order to analyze whether OVO was able to

educe the harmful effects of noise in the classification results, sev-

ral classification algorithms with and without the usage of this de-

omposition were compared. The experimental results showed that,

n the presence of noisy data, decomposition generally offers bet-

er classification performance than solving the original multi-class
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problem. These improvements are mainly attributed to the distribu-

tion of the noisy examples in the binary subproblems. Furthermore,

the separability of the classes is increased, while it is also possible to

collect information from different classifiers.

Another alternative to overcome the problems resulting from the

presence of class noise is the usage of noise filtering techniques,

which remove potentially noisy examples in a preprocessing step

[11,12]. Several studies show the benefits from their usage regarding

improvements in the classification predictive performance and the

reduction in the complexity of the classifiers built [5,13–15]. Noise

filters can use different information to detect noise, such as those

employing neighborhood or density information [11,16,17], descrip-

tors extracted from the data [13,18] and noise identification mod-

els induced by classifiers [13] or ensembles of classifiers [5,14,19,20].

In other papers, they are also used to remove predictive noise [21]

and investigate the presence of noise in imbalanced datasets [22,23].

Since each filter has a bias, it may have a distinct performance de-

pending on the data used [24,25]. Thus, it is common the existence of

a margin of improvement on the noise detection accuracy of filtering

methods.

This paper investigates a new approach to detect and remove label

noise in multi-class classification tasks. This approach combines the

OVO multi-class decomposition strategy with a group of noise filter-

ing techniques. In this combination, each noise filter, instead of being

applied to the original multi-class dataset, is applied to each binary

subproblem produced by the OVO strategy. Each noise filter assigns

to each training instance a degree of confidence of the example being

noisy, named noise degree prediction (NDP), which is a real number.

However, some noise filters only output two values: noisy and not

noisy. If so, the noise filter is adapted to output NDPs. For each train-

ing instance, the NDPs obtained from all noise filters are combined

using a soft voting strategy, producing a unique NDP for the instance.

The strategy adopted in this paper is to remove a fixed number of the

examples with highest NDP values.

The proposed approach has three main advantages: (i) it does not

require any modification in the concept and the bias of the noise fil-

ters; (ii) it provides for each training instance a combined degree of

confidence regarding noise identification and; (iii) it does not make

any assumptions about the noise characteristics.

In order to evaluate the impact of using the OVO strategy for noise

filtering in multi-class tasks, we present an empirical study using

several well-known noise filters found in the literature that will be

adapted for soft voting [5,13,14,16,20] and a large amount of datasets

with different levels of class noise [1]. The differences between the

filtering with and without decomposition will be analyzed based on

the accuracy of the noise filters detecting the noisy examples in each

scenario.

The rest of this paper is organized as follows. Section 2 points out

the main motivations for this study, presenting an overview on noise

filtering techniques and the motivations for the use of decomposi-

tion strategies in multi-class problems. Section 3 details the approach

proposed for noise detection. Section 4 describes the experimental

framework, whereas Section 5 analyzes the experimental results ob-

tained by the noise filters with and without decomposition. Finally,

Section 6 presents the main conclusions from this study. A website

with additional information, such as the datasets employed and the

results of each noise filter is available at http://www.biocom.icmc.

usp.br/∼lpfgarcia/ovo.

2. Preliminaries

This section presents the background to support our proposal.

Section 2.1 describes the main aspects of class noise treatment with

a brief overview of the noise filtering techniques employed. Then,

Section 2.2 introduces the usage of binary decomposition strategies

that are commonly employed in multi-class classification.
.1. Class noise treatment by noise filtering

Noise filters [5,13–16,20] are preprocessing methods commonly

sed to identify and remove noise in a dataset [2]. Most of the ex-

sting filters focus on the elimination of examples with class noise,

hich has shown to be advantageous [18]. In contrast, the elimina-

ion of examples with feature noise is not as beneficial [1], since other

ttributes from these examples may be useful to build the classifier.

Most of the noise filters [5,14,20] adopt a crisp decision for noise

dentification, classifying each training example either as either noisy

r safe. Soft decision strategies, on the other hand, assign a noise de-

ree prediction to each example, NDP values. The soft decision helps

o correctly identify examples, those whose identification as noisy is

ore difficult. Besides, it makes easier the combination of multiple

lters, a strategy proposed in this paper.

Next, the noise filters used in the experiments performed for this

tudy are briefly presented. Since they were all proposed for crisp

oise detection, their adaptation to allow soft decision is also dis-

ussed. The following filtering methods were used in this study, each

elonging to a different filtering paradigm:

1. All-k-NN (AENN) [16]. Distance-based approaches uses the k-NN

decision rule [16,26] to identify noisy data. Techniques following

this approach assume that an example is likely to be noisy if it is

located close to other examples from a different class. These noise

filters are able to remove examples with class noise and examples

lying on the decision border, which increases the margin of sep-

aration between the classes. A well known technique from this

group is All-k-NN (AENN) [16]. This filter applies, iteratively, the

k-NN classifier with several increasing values of k. Examples mis-

classified by their neighbors are marked as noisy and eliminated

from the dataset. The soft version of this technique estimates the

NDP of an example as the percentage of times it is labeled as noisy

in different iterations.

2. Prune Saturation Filter (PruneSF) [13]. Complexity-based ap-

proaches extract complexity measures from the training data

[13,18]. For instance, the Saturation Filter (SF) [13] exhaustively

looks for examples that reduce a metric called Complexity of the

Least Correct Hypothesis (CLCH) associated with a dataset. The size

of a Decision Tree (DT) without pruning is used to estimate the

CLCH value [13]. If the removal of an example reduces the CLCH

value, it is marked as noisy. Next, the method carries out a new

search in the dataset without this example and repeats the same

procedure until no example is marked as noisy or a stopping crite-

rion is reached. PruneSF [13] is based on SF. It uses a DT with prun-

ing in a previous step to overcome computation time restrictions.

Therein, first a pruning step removes all examples misclassified

by a pruned DT, which are regarded as noisy. Afterwards, the iter-

ative procedure described for SF is performed. In our work, a soft

decision is obtained by firstly ranking all examples removed in the

pruning step as noisy with a probability of 1. Next, the examples

are ranked according to their CLCH values, which are normalized

to give their probability of being noisy.

3. High Agreement Random Forest (HARF) [20]. This is a well-

known classifier-based filter that uses a Random Forest classifier

[27]. This technique considers the rate of disagreement in the pre-

dictions made by the individual trees in the forest to detect the

noisy examples: if this rate is high, the example is probably noisy;

otherwise, it is considered to be clean. A soft decision for this filter

can be obtained by the percentage of base trees that disagree on

their predictions for a particular instance.

4. Static Ensemble Filter (SEF) [5]. Ensemble-based approaches

employ ensembles of classifiers to identify the noisy exam-

ples [5,14,20]. Their motivation is that different classification

models provide a better alternative for detecting mislabeled ex-

amples than using information from a single model only [5]. SEF

http://www.biocom.icmc.usp.br/~lpfgarcia/ovo
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[5] uses a set of three learning algorithms (C4.5 [28], k-Nearest

Neighbor (k-NN) [29] and SVM [8]) to identify and remove the

potentially noisy examples. The training data is classified using

k-fold cross-validation and the noisy examples are those misclas-

sified by more than half of the classifiers (majority voting). The

soft decision for SEF is computed as the percentage of disagree-

ments between the predictions of the classifiers.

5. Dynamic Ensemble Filter (DEF) [14]. By using a fixed set of clas-

sifiers, the predictive performance of SEF may be affected by the

bias of the classifiers employed. To overcome this problem, DEF

[14] dynamically selects the most suitable set of classifiers for a

given dataset. The selected classifiers are those that obtain the

best predictive performance on the training data using k-fold

cross-validation. Finally, similarly to SEF, a majority vote is used

to determine whether an example is noisy or not. The adaptation

of DEF for soft voting is similar to that of DEF. Therefore, exam-

ples misclassified by more classifiers will be considered unsafe

and, as a result, will be assigned a higher probability of being

noisy.

.2. Binary decomposition strategies in classification problems

Many real-world classification tasks, such as text classification

30], medical diagnosis [31] and intrusion detection [32], are char-

cterized by having more than two class labels. They are known as

ulti-class classification problems. Usually, it is easier to build a clas-

ifier to distinguish only between two classes (called binary clas-

ifiers) than among a higher number of classes, since the dataset

onformations and decision boundaries for multi-class problems

end to be more complex.

In order to be able to use binary classifiers in multi-class prob-

ems, two different approaches are found in the literature [7]: (1)

daptation of a learning algorithm to manage more than two classes

nd (2) decomposition of the multi-class problem into a set of easier

o solve binary subproblems. The former requires the adaptation of

he learning procedure of an existing method, which may be a dif-

cult task [33]. The second alternative is usually an easier, yet ac-

urate way, to efficiently deal with the original problem [9]. These

echniques are referred to as binary decomposition strategies [7].

Galar et al. [9] list various benefits of using decomposition strate-

ies. Although they are more frequently used to allow binary classi-

cation techniques to address multi-class problems, these strategies

an also make the separation of the classes less complex. The decom-

osition also allows to parallelize the classifiers learning, since the

inary subproblems are independent and can be solved in different

rocessors.

Decomposition strategies have two steps. At the first stage, the

roblem is decomposed into several binary subproblems which are

olved by independent binary classifiers, called base classifiers [34].

n a second phase, the outputs obtained for each subproblem need to

e aggregated. Even though different decomposition strategies can be

ound in the literature, the most widely used ones are the following

7]:

1. The One-vs-One (OVO) decomposition induces a classifier for each

pair of classes, dividing a classification problem with M classes

into M(M − 1)/2 binary subproblems. The induction of the classi-

fier for each pair of classes uses only training examples from these

classes.

2. The One-vs-All (OVA) scheme induces a different classifier to dis-

tinguish each class from all the other classes. Thus, it divides a

classification problem with M classes into M binary subproblems

considering all the training examples, which are then used to in-

duce M different classifiers.

At the second stage of a binary decomposition, the outputs from

he binary classifiers are combined into a single output, the predicted
lass. Galar et al. [9] provided an exhaustive study comparing differ-

nt methods to combine the outputs from the base classifiers in the

VO and OVA strategies. The weighted voting [35] and the methods

rom a framework of probability estimates [36] presented the best

redictive performances. However, a voting strategy, where the class

ith the largest number of votes is selected, is the most used and

implest decision combination strategy, with predictive performance

imilar to those of the most complex strategies [9]. When classifying

n example using the OVO approach, it is also possible to use a tour-

ament or decision on Directed Acyclic Graphs (DAG) [37]. Therein, an

nitial two-class classifier is consulted and one of the classes is elimi-

ated from further analysis, while the predicted class is tested against

nother class. This process is repeated until one single class remains.

lthough it is a relevant strategy and has been successfully used in

ome multi-class applications, this combination is not suitable for

ur filtering scenario, where the objective is to classify an example

s noisy or clean. In this case, the decomposition will give more at-

ention to the noisy cases, instead of selecting one of the multiple

lasses.

A decomposition strategy frequently compared with OVO is the

VA strategy. There are several advantages in the use of OVO instead

f OVA [9,34,38]. The main benefits of the OVO decomposition strat-

gy discussed in the literature are: the construction of simpler de-

ision borders between the classes and the increase of classification

erformance with less training time, since the complexity of the sub-

roblems generated is smaller. Besides, this is the binarization tech-

ique mostly used as default by learning algorithms, applications and

oftware tools in Machine Learning and Data Mining [39–41]. More-

ver, OVA tends to produce imbalanced classification tasks, which can

arm the base classifiers performance for some classes [9,42]. The

ame behavior can be expected for the noise filters, where the pro-

ortion of examples in the minority classes can be further reduced, so

hey may be considered as noisy cases. Finally, Sáez et al. [10] pointed

ut additional advantages of using the OVO decomposition instead of

he OVA decomposition for noisy data.

Therefore, this paper proposes to use OVO decomposition strat-

gy, not for classification purposes as they are traditionally employed,

ut for noise preprocessing. In the same way that decomposition

elps to improve the performance of classifiers in multi-class prob-

ems, one may expect that they can help to improve the performance

f noise filtering methods when detecting noisy examples in multi-

lass datasets, since filters will work over simpler binary subproblems

here the noisy examples can be more easily identified. Next section

ntroduces this proposal.

. A noise filtering scheme based on the OVO decomposition

trategy

This section describes the noise filtering scheme proposed, which

s based on the usage of OVO to improve the accuracy of noise filters,

stablishing a parallelism with the standard usage of decomposition

trategies in classification. The proposal is composed of three main

teps:

1. Problem decomposition. In this phase, the multi-class classifica-

tion problem is decomposed into p binary subproblems using the

OVO decomposition strategy.

2. Filtering of each binary subproblem. When using decomposi-

tion for classification purposes, a classifier is built for each one of

the p binary subproblems. Similarly, our proposal applies a noise

filter to each one of the subproblems created in the previous step.

Since the noise filters are adapted to output a confidence level re-

garding the noise predictions (the NDP values), this step results

in p different lists of NDP values (N1, . . . , Np), each one with the

NDP values of the examples belonging to the binary subproblem

in which the filter is applied.
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Fig. 1. Noise filtering scheme using decomposition strategies.
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3. Combination of the lists of noisy examples. In the same way

that the predictions of the different classifiers must be com-

bined when using decomposition for classification, our proposal

also requires a last step where the different lists of NDP values

(N1, . . . , Np) are combined. Thus, a unique final list of NDP values

(NF), which will be ordered from the highest to lowest value (from

the noisiest example to the cleanest example), is computed in this

last step. For the combination of these lists, the average NDP of

each example is computed.

Fig. 1 describes the noise filtering scheme proposed. The first step

employs the OVO decomposition in the multi-class dataset. The next

step is responsible of applying a filter technique to each binary sub-

problem and return the lists of NDP values. The third step constructs

the final list of NDP values considering the lists obtained in the pre-

vious step.

The following sections describe each of these steps in depth.

Section 3.1 is devoted to the problem decomposition, Section 3.2 de-

scribes the application of the noise filter to each binary subproblem,

whereas Section 3.3 shows how the different lists of NDP values are

combined in order to obtain the final list of NDP values of each train-

ing example. Finally, Section 3.4 discusses the computational cost of

the decomposition strategy proposed for noise filtering.

3.1. Problem decomposition

Decomposition has shown to be advantageous when building

classifiers from noisy datasets [10]. This fact is mainly attributed to

the distribution of the noisy examples in each subproblem, which re-

duces the complexity of the original problem, while increasing the

separability of the classes. It also allows to combine information from

different models, where the failure of some models can be corrected

by the remaining models.

The usage of binary decomposition strategies can also help to fil-

ter noisy examples in multi-class problems. Usually, a higher num-

ber of classes in a dataset implies in a higher complexity due to the

need to consider more relationships between the classes. Since the

decomposition of the multi-class problem can create simpler sub-

problems (with a higher degree of separation between the classes)

and distributes the noisy examples in several subproblems, the noise

filters can improve their detection capabilities when compared with

preprocessing the original multi-class dataset. Thus, the use of OVO

is expected to increase the accuracy of the noise filters in multi-class

data. Therefore, the first step of the proposed method decomposes
he original multi-class classification problem into p binary subprob-

ems D1, . . . , Dp. When using OVO decomposition to fulfill this task,

p = M(M − 1)/2.

The artificial multi-class dataset shown in Fig. 2 illustrates these

ssues. Fig. 2a shows the original multi-class artificial dataset, com-

osed of 3 classes (•, � and �). The possible borders between the

lasses are also shown. Fig. 2b shows the same artificial dataset with

hree potential noisy examples. Relabeling these examples changes

he decision borders, which became more complex. Fig. 2c illustrate

he effect of the OVO decomposition strategy in this noisy dataset. It

s possible to check the simplification of the class borders due to the

ecomposition. A noise filter applied to these datasets is able to eas-

ly identify the noisy examples with a high confidence (◦, � and �)

n each one of the two-class datasets.

.2. Filtering of each binary subproblem

Once the p binary subproblems have been created, the second step

pplies a noise filter to each of them. This filtering method should be

dapted to provide a soft decision on noise prediction (NDP values)

o each one of the examples belonging to these subproblems. Since

NDP value represents the probability of an example being noisy, it

ust be in the interval [0,1].

Thus, the aforementioned process results in p different lists of

DP values N1, . . . , Np, each one referring to the examples belong-

ng to each one of the binary subproblems D1, . . . , Dp. The NDP val-

es v j
i

of each list Ni are normalized applying the transformation
j
i

← (v j
i
− mini)/(maxi − mini), where mini and maxi are the mini-

um and maximum NDP values provided by the noise filter in the

ubproblem Di.

The p normalized lists must be combined in the last step to pro-

uce the final list of NDP values of all the training examples (NF). It

ust be observed that our proposal can employ any existing filtering

ethod in this step that provides a soft decision or can be adapted for

uch, so it should be simple to employ various filters for noise identi-

cation and removal.

.3. Final ranking of noisy examples

The last step of the noise filtering scheme proposed builds the fi-

al list of NDP values (NF) for the multi-class problem. Thus, the p

ormalized lists of NDP values obtained in the previous step must be

ombined to form the final list N .
F
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Fig. 2. The effect of the OVO decomposition in the reduction of complexity of the borders between the classes.
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The average value of all the occurrences of each example in the

ifferent subproblems is considered as its final NDP value in the list

F. This is a simple yet effective strategy which allows obtaining a

ombined NDP value. Finally, all the training examples are ordered

rom highest NDP value (which is most likely to be noisy) to the low-

st NDP value (which is most likely to be a clean example).

The final removal of noisy examples can be made following differ-

nt approaches. For example, a domain expert can fix a threshold in

rder to remove all those examples which exceeds it. A second alter-

ative is to determine different thresholds to define which examples

hould be removed, each defining different percentages of the noisy

xamples to be removed. A third alternative, adopted in this paper,

s to remove a fixed number of examples, the r examples with high-

st NDP values. Since we will introduce the noisy examples in a con-

rolled way in the dataset (in order to know the exact number of noisy

xamples in each dataset), this third alternative can help us to better

stimate the performance of the noise filters in the detection of the

rtificially introduced noisy examples.

.4. Analysis of computational cost

There are two main components in the computational cost of the

roposed approach regarding the application of the noise filter over

he original multi-class dataset: (i) the application of the filtering us-

ng the OVO decomposition and (ii) the combination of the outputs

rom the different noise filters.

For the first component, since the OVO decomposition strategy

s applied to the multi-class problem, the filtering occurs for M(M −
)/2 datasets, where M is the number of classes. Therefore, the cost of

ach filter is multiplied by O(M2). The second component, the combi-

ation of NDPs for each training example into one NDP has a cost of

(n), where n is the number of training examples.
It should be observed that each OVO binary subproblem has less

xamples than the original problem. Therefore, even though the cost

f the filter is multiplied by O(M2), each filter application is usually

uch faster than the application of the same filter to the original

ataset.

Finally, although the application of the proposed approach can be

lower than the application of the noise filters to the original multi-

lass dataset, the time should not be a strong concern, since the ap-

lication occurs only once (both approaches are offline preprocessing

ethods). Moreover, the overall time cost of the proposal can be re-

uced if its internal filters are implemented in a parallel architecture,

hich can take advantage of the distributed nature of the proposed

pproach.

. Experimental framework

This section describes the experiments carried out in this paper to

valuate the behavior of the noise filtering scheme based on the usage

f the OVO binary decomposition strategy. First, Section 4.1 describes

he datasets used. Section 4.2 presents the noise filters considered.

inally, Section 4.3 describes the methodology followed to analyze

he results.

.1. Datasets

The experimentations were carried out using 28 multi-class clas-

ification datasets taken from the UCI and KEEL-dataset repos-

tories [43,44]. Table 1 summarizes the main characteristics of

hese datasets, organized according to their number of examples,

umber of attributes (in parenthesis, showing the number of numer-

cal/categorical features), imbalanced ratio (IR) measure and num-

er of classes [45]. The examples containing missing values were



158 L.P.F. Garcia et al. / Knowledge-Based Systems 90 (2015) 153–164

Table 1

Characteristics of the real-world datasets.

# Instances # Attributes # IR # Classes

M < 5 5 ≤ M < 10 10 ≤ M < 100

n < 100 10 ≤ a < 100 1 < IR < 5 Zoo(1/15)

100 ≤ n < 1000 a < 10 IR = 1 Iris (4/0)

Tae (3/2)

1 < IR < 5 Hayes-roth (4/0) Led7digit (7/0)

5 ≤ IR < 10 Balance (4/0) Ecoli (7/0)

Newthyroid (5/0)

10 ≤ a < 100 IR = 1 Vehicle (18/0) Movement-libras (90/0)

Vowel (10/0)

1 < IR < 5 Wine (13/0) Breast-tissue (9/0) Collins (20/1)

Flags (2/26)

5 ≤ IR < 10 Glass (9/0)

IR ≥ 10 Expgen (79/0)

1000 ≤ n < 10, 000 a < 10 IR ≥ 10 Car (0/6) Yeast (8/0) Abalone (7/1)

10 ≤ a < 100 IR = 1 Segmentation (18/0)

1 < IR < 5 Cmc (2/7) Landsat (36/0)

5 ≤ IR < 10 Flare (0/11)

IR ≥ 10 Page-blocks (10/0) Cardiotocography (20/0)

Wine-quality (11/0)

n ≥ 10, 000 a < 10 IR ≥ 10 Nursery (0/8)

o

n

i

b

n

N

t

o

r

n

t

R

t

t

i

removed from the datasets. The datasets were grouped into distinct

categories according to their characteristics: from small (n < 100)

to very large datasets (n ≥ 10,000); from a low dimensionality (a <

10) to a medium/high dimensionality (10 ≤ a < 100); from balanced

(IR = 1), to highly imbalanced (IR ≥ 10); and finally from a small num-

ber of classes (M < 5) to a high number of classes (10 ≤ M < 100).

In order to control the amount of noise in each dataset and ver-

ify how it affects the noise filtering methods, noise is introduced into

each dataset in a supervised manner. In this paper we use the uniform

random noise method to noise imputation, where each example has

the same probability of having its label exchanged by another label

[46]. Noise was injected at the rates of 5, 10, 20 and 40%. As a re-

sult, we are able to check the influence of increasingly noise levels in

the detection results achieved. For each dataset and noise level, we

generated 10 different noisy versions. Thus, 1120 noisy datasets with

class noise were created from the aforementioned 28 base datasets.

All these multi-class datasets are available on the website associated

with this paper.

4.2. Noise filters

The proposal presented in this paper can use any existing noise

filter providing a soft decision on noise identification or that can be

adapted for such. For the sake of generality, we will evaluate the

behavior of the proposal using five different up-to-date noise fil-

tering techniques described in Section 2.1, which are well-known

representatives of the field and present different biases [2]. All of

them were adapted to output a NDP value. They are HARF, SEF, DEF,

PruneSF and AENN. SEF and DEF combine three classifiers, PruneSF

estimates the CLCH values using an unpruned DT induced by C4.5

[28] and the AENN technique is run varying the k value from 1

to 9.

4.3. Methodology

In order to assess the performance of the noise filtering scheme

proposed, the behavior of each one of the five aforementioned noise

filters for the multi-class and decomposed problems was measured.

The ability of the filters in noise detection is recorded in both scenar-

ios. Finally, the performance achieved by the filters in noise retrieval

for the multi-class and decomposed subproblems are compared.

To perform these comparisons, the precision at N (p@N) metric is

used, as suggested in [47]. Thereby, N is a threshold on the number
f examples in NF that will be regarded as noisy. We set N to be the

umber of noisy examples artificially introduced in the datasets, as

n [47]. The precision in noise detection is then defined as the num-

er of correctly identified noisy cases (#correct_noisy) divided by the

umber of examples identified by the filter as noisy (the threshold

):

p@N = #correct_noisy

N
(1)

Three types of analyzes are performed:

1. Evaluation of the performance of the filters in noise identifi-

cation for the original multi-class problems and for the OVO

decomposition strategy (Section 5.1). The first analysis considers

the average of the p@N performance of each filter over all noise

levels in a dataset. The average ranking of the filters performance

before and after decomposition in all datasets are also compared.

The objective in this case is to identify for which filters the OVO

decomposition strategy shows more improvements in noise iden-

tification.

2. Analysis of the performance of the filtering scheme for differ-

ent noise levels (Section 5.2). The second analysis considers the

performance of the filters for each noise level. The purpose is to

analyze the behavior of the decomposition scheme for different

noise levels.

3. Analysis of the filtering scheme performance in imbalanced

datasets (Section 5.3). The third analysis investigates the effect

of noise filtering in the most imbalanced datasets. Since each ex-

ample is now preprocessed by multiple filters, the minority class

could be impaired and reduced even further. This last analysis

identifies how the minority classes are affected by the decompo-

sition scheme, by monitoring the IR values before and after the

employment of the decomposition.

The Wilcoxon signed-rank statistical test [48–50] was applied in

he first and second analysis to compare the predictive performance

f OVO against the original multi-class approach. The R+ (sum of the

ankings for the positive differences), R− (sum of the rankings for the

egative differences) and p-values in this test are obtained to confirm

he results at a confidence level of 95% [48]. High R+ values with low
− values indicate a superior performance of the OVO decomposi-

ion strategy, while the opposite behavior indicates better results for

he original multi-class approach. Next section presents these exper-

mental results.
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Fig. 3. p@N of filters for each dataset and type of noise filtering scheme.
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. Experimental results

This section presents the experimental results obtained in this

tudy. Section 5.1 reports the average p@N values of the decompo-

ition and original multi-class strategies and the average ranking of

ach noise filter. Section 5.2 reports the performance of the filters at

ach noise level. Finally, Section 5.3 presents how the filters behave
n imbalanced datasets. i
.1. Average p@N performance

This analysis considers the average predictive performance of

ach filter, independently of the noise level introduced in the data.

herefore, this analysis considers the average results for all noisy ver-

ions of the datasets, despite their noise levels. The average p@N val-

es obtained by the filters in the identification of the artificial noise

nserted are shown in the heatmap of Fig. 3. There are two groups of
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Fig. 4. Ranking of the p@N average for each filter in each filtering strategy.

Table 2

The p-values of Wilcoxon signed-rank test for

each filter.

Filter R+ R− p-value

HARF 108 292 2.89E − 02

SEF 387 19 2.92E − 05

DEF 379 26 6.29E − 05

AENN 378 28 7.04E − 05

PruneSF 355.5 49.5 4.84E − 04
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columns in this figure, one for each type of strategy: (1) using the

original multi-class datasets and (2) using the datasets decomposed

by the OVO strategy. Each column represents one filter, while each

row corresponds to a specific dataset. While higher p@N values are

colored in green scale, lower p@N score levels are colored in blue

scale.

It is possible to observe in Fig. 3 that higher p@N values were ob-

tained for the datasets car, collins, expgen, iris, landsat, newthyroid,

nursery, page-blocks, segmentation, vowel, wine and zoo. On the other

hand, lower p@N values were verified for the datasets abalone, breast-

tissue, cmc, flags, flare, led7digit, tae, wine-quality and yeast. The other

datasets had intermediate predictive performance, with p@N values

ranking between 0.5 and 0.7 for almost all the filters.

In all datasets, for at least one filter, the OVO decomposition was

able to improve the filtering performance when compared to the

original multi-class scheme. Most of the improvements were ob-

tained for the SEF, DEF, AENN and PruneSF techniques. The HARF filter

had an increased performance for some specific cases, while it main-

tained or decreased its performance for others.

The performance of the OVO strategy in the datasets with higher

p@N values was better or at least similar to that of the original multi-

class strategy. The highest improvements were obtained for datasets

with intermediate and low p@N values, such as yeast, wine-quality,

vehicle, movement-libras, cardiotocography and breast-tissue. In cases

where the multi-class scheme had a low p@N, like cmc and abalone,

he OVO decomposition was able to improve the performance further.

Table 2 shows the results of the statistical comparison between

he OVO and the original multi-class filtering strategies. The R+, R−

and p-values obtained in the Wilcoxon’s test for each filter are shown.

At 95% of confidence level, there are significant differences for all fil-

ters. OVO was superior in all of the tests, except for the HARF filter,

where the multi-class strategy was superior. Next section analyzes

these results further, by separating them according to the noise level.
Fig. 4 presents the average ranking of the filters concerning the

@N values reported in all datasets. The groups of columns corre-

pond to the multi-class and OVO strategies. While each column rep-

esents one filter, the y-axis corresponds to the ranking average. Bet-

er filters will show a lower ranking.

It is possible to observe in Fig. 4 that the HARF technique was the

est performing filter for both OVO and multi-class scenarios. DEF

omes next, followed by SEF. AENN and PruneSF were the worst per-

orming filters in both filtering schemes. It is interesting to notice that

he order of the filters according to their overall p@N performance

as maintained after the application of the OVO decomposition. The

nsembles DEF and SEF seem to have benefited more from the OVO

ecomposition according to this analysis, since their ranking was im-

roved after the application of the decomposition.

.2. Performance per noise level

The previous analysis on the average p@N performance hinders

he behavior of the techniques for specific noise levels. Fig. 5 shows

he difference in the predictive performance achieved by the multi-

lass and OVO strategies in each dataset, for each noise level. The

-axis represents the noise levels while the y-axis corresponds to

mprovements or decreases of p@N achieved when using the OVO

trategy. HARF is shown by black dots, SEF by red triangles, DEF by

lue squares, AENN by green crosses and PruneSF by purple dashed

quares. The gray area in the plots highlights improvements achieved

y the filters when using the OVO strategy with respect to not per-

orming any decomposition.

For several datasets, it is possible to notice improvements of the

@N performance achieved by the OVO decomposition. For SEF, DEF

nd PruneSF we have a negative slope (as the noise level increases,

he performance decreases), with more improvements of perfor-

ance for low noise rates like 5, 10 and 20%. For AENN we have

ew cases with positive slope (better results for higher noise levels)

nd improvements of performance for high noise levels like 40%. For

he HARF filter, the predictive performance was similar to the per-

ormance of the multi-class strategy or impaired, but there are also

mprovements, in few cases, for high noise levels.

In general, for all datasets there are at least three filters with im-

roved performance. While SEF, DEF and PruneSF had their perfor-

ance improved for low noise levels, AENN showed improved results

or high noise levels. The HARF filter had improved performance for

igh noise levels, but mostly it was not significant. There is a specific

ataset where most of the filters achieved a low performance when
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Fig. 5. Differences of p@N values between the OVO and the multi-class strategies.
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VO was employed: balance. In the datasets collins, expgen, flags and

ae the results were impaired for specific noise levels. Except for the

ataset expgen, most of the previous datasets are imbalanced.

Table 3 shows for different noise levels the R+, R− and p-values

f the Wilcoxon’s test comparing the pair OVO vs multi-class, respec-

ively. In most of the cases, there are statistical differences in favor

f OVO. However, there are no statistical differences between some

pecific noise filters for some noise levels: for HARF there is no sta-

istical difference at 20 and 40% of noise level and for PruneSF this

appens for 5 and 10% of noise level. The multi-class strategy was su-

erior to OVO only when using the HARF filter for 5 and 10% of noise

evel.
 w
Considering Table 3 and the results illustrated in Figs. 3 and 5, the

VO strategy was able to improve the p@N values for the SEF, DEF and

ENN filters. The same happened with the PruneSF filter in almost all

oise levels but without statistical difference for some specific noise

evels. For the HARF filter, the multi-class strategy was superior, ex-

ept for 40% of noise level.

.3. Filtering noise in imbalanced datasets

The use of the OVO decomposition strategy improved the per-

ormance of noise filters for several multi-class datasets, even those

ith high IR. Nonetheless, it is important to keep all safe examples
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Table 3

p-values of Wilcoxon signed-rank test for each filter and noise level.

HARF SEF DEF AENN PruneSF

Rates R+ R− p-value R+ R− p-value R+ R− p-value R+ R− p-value R+ R− p-value

5% 87.5 303.5 1.49E − 2 380.5 24.5 6.61E − 05 381.5 23.5 5.42E − 5 346 57 1.37E − 3 192.5 210.5 8.68E − 1

10% 76.0 320 5.27E − 3 374 29 1.13E − 04 375.5 29.5 9.88E − 5 358.5 47.5 4.13E − 4 237.5 165.5 3.94E − 1

20% 116.5 268.5 9.23E − 2 391 12 2.75E − 05 352 39 5.54E − 4 400 6 7.51E − 6 307.5 88.5 1.09E − 2

40% 263.5 132.5 1.87E − 1 395.5 10.5 1.21E − 05 347.5 52.5 7.76E − 4 404.5 1.5 4.68E − 6 386.5 18.5 2.87E − 5

Fig. 6. IR achieved by the OVO and multi-class strategies in datasets with IR ≥ 10.
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from the minority class, avoiding their removal by the filters. Fig. 6

shows the IR of the datasets filtered by the multi-class and OVO

strategies, for each noise level. The IR values for the original datasets

when all the noisy examples are correctly identified are also shown.

These graphs are plotted only for datasets with a high IR (IR ≥ 10)

and they consider the best performing filters in the multi-class set-

ting (the HARF filter, in which the multi-class setting generally out-

performs decomposition). The x-axis represents the noise levels and

the y-axis corresponds to the IR values. The multi-class IR and the

OVO IR are represented with black circles and red triangles, respec-

tively, while the IR for the original noisy datasets are illustrated with

blue squares. These plots show how preprocessing affects the mi-

nority classes. The results for perfect noise preprocessing (original)

remain the same for different noise rates, since a uniform random

noise imputation method was used, which tends to affect all classes

uniformly.

The HARF filter obtained the best performance in these datasets.

For the car, cardiotocography and expgen datasets, the best p@N per-

formance was obtained by the multi-class strategy. For the abalone,

page-blocks, wine-quality and yeast datasets, which mainly have nu-

merical attributes, the OVO strategy presented the best p@N perfor-

mance. For the nursery dataset, the two strategies had the same p@N

performance.

Regarding the IR values, both multi-class and OVO filtering

schemes tend to produce more imbalanced datasets compared with if

perfect filtering, except in the page-blocks dataset. They both seem to

have eliminated safe examples from the minority classes. Overall, the

multi-class filtering strategy always produces more balanced datasets
han the OVO strategy. The OVO strategy presents the largest changes

f IR for the datasets abalone, for all noise levels, wine-quality for 10%

f noise level, and yeast for 20 and 40% of noise level. Even when im-

roved the performance, OVO always increased the imbalance in the

atasets and tended to remove more minority class examples. This

s a harmful effect that can be due to the several filter application to

ach example in the OVO strategy, increasing its probability of being

abeled as noisy. Nonetheless, the increase of IR seems to be a harmful

ffect of noise pre-processing, despite the filtering scheme employed.

ome strategies can minimize these effects, such as weight the NDP

f an example by the proportion of training examples from its class.

his could decrease the reduction of the minority class examples by

he filters.

. Conclusion

This paper investigated the performance of five well-known noise

ltering techniques when multi-class datasets are decomposed using

he OVO decomposition strategy. Several benchmark public datasets

ere used in the experiments and different levels of artificially im-

uted noise data were considered. In Sáez et al. [10], the OVO strat-

gy improved the robustness of the classifiers in the presence of noise

hen dealing with multi-class datasets. In this study, we reinforced

he benefits of the same strategy under a different perspective: to use

he OVO strategy to improve the performance of various preprocess-

ng techniques in label noise identification.

The OVO decomposition presented a better performance than

he multi-class strategy in almost all analysis carried out. This may
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ave occurred because, while in the original multi-class dataset the

nformation has a complex structure representation, the simpler

tructure of the binary subproblems after the OVO decomposition

elps the identification of the noisy data. Considering all results ob-

ained by the OVO strategy, the SEF, DEF, AENN and PruneSF filters

ad their p@N values improved for almost all datasets. For the HARF

lter, the multi-class strategy remained the best for most of the noise

evels.

Results from a separate analysis in imbalanced datasets showed

hat filtering tends to increase the imbalance, regardless of the fil-

ering scheme employed. OVO intensified this effect. These results

hould be further investigated, taking into account the performance

f the filters in the individual classes. This analysis also reinforced

he importance of the presence of a domain specialist to analyze the

esults, even when the noise filters show a good performance in the

verall noise identification task.

As future work, we would like to evaluate other decomposition

trategies and study the use and combination of additional filters.

his can improve the low performance seen for some datasets. For

xample, the use of dynamic OVO strategies [51,52] to improve the

oise detection is a promising alternative. We would like also to an-

lyze whether the multi-class datasets have an intrinsic noise level,

hich was not considered in the reported experiments because it is

sually not possible to guarantee that an example is noisy. We also

lan to investigate other strategies able to improve the filters perfor-

ance in imbalanced data, specially for the minority classes. It is also

elevant to develop a method able to automatically set the thresh-

ld for the NDP value to define whether an example is noisy. Possible

lternatives are to use complexity measures or cumulative suns of

robabilities of NDP until an abrupt change in percentages obtained.
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